New MiniBooNE Results

Zelimir Djurcic
Physics Department
Columbia University

Outline

MiniBooNE Motivation and Description MiniBooNE's First Oscillation Results Low Energy Electron Candidate Excess MiniBooNE's New Results Results from NuMI at MiniBooNE Anti-neutrinos at MiniBooNE Cross-sections at MiniBooNE Summary

MiniBooNE Experiment Motivation and Description

MiniBooNE: Motivated by Positive LSND Result

LSND observed a ($\sim 3.8\sigma$) excess of $\overline{\nu}_e$ events in a pure $\overline{\nu}_{\mu}$ beam: 87.9 ± 22.4 ± 6.0 events

Oscillation Probability: $P(\overline{v}_u \rightarrow \overline{v}_e) = (0.264 \pm 0.067 \pm 0.045)\%$

Baseline: L = 540 meters, ~ x15 LSND

Neutrino Beam Energy: $E \sim x(10-20)$ LSND

Different systematics: event signatures and backgrounds different from LSND

High statistics: ~ x6 LSND

Perform experiment in both neutrino and anti-neutrino modes.

MiniBooNE (Booster Neutrino Experiment)

Oscillation Analysis

ν_μ→ν_e Oscillation Search

- Main ν_{μ} flux from $\pi^+ \to \mu^+ \ \nu_{\mu}$
- Intrinsic v_e flux from

$$-\mu^+ \rightarrow \nu_{\mu} e^+ \frac{\nu_e}{\nu_e}$$

$$- K^+ \rightarrow \pi^0 e^+ \frac{v_e}{}$$

$$- K^0_L \rightarrow \pi^- e^+ \frac{e^-}{v_e}$$

$$\Rightarrow v_e / v_u \approx 0.5\%$$

MiniBooNE Detector:

- -12m diameter sphere
- -950000 liters of oil(CH_2)
- -1280 inner PMTs
- -240 veto PMTs

Detector Requirements:

- -Detect and Measure Events: Vertex, E_v ...
- -Separate v_{μ} events from v_{e} events.

Oscillation Analysis: Expected Background Events

Two main categories of backgrounds: v_{μ} mis-ids and intrinsic v_{e}

Predicted backgrounds after particle identification:

Total Expected Background = 358 events.

Example LSND Osc Signal = 163 events $(\Delta m^2 = 0.4 \text{ eV}^2, \sin^2 2\theta = 0.017).$

 5.6×10^{20} POT in neutrino mode used for the analysis.

Region 475 < E, < 1250 MeV

Data: 380 events

Expected: 358±19±35 events

Difference: 0.55 o

MiniBooNE's first result show no evidence for $v_{\mu} \rightarrow v_{e}$ appearance-only oscillations in the analysis region: simple 2v oscillation excluded at 98% CL.

Details:

Phys. Rev. Lett. 98, 231801 (2007), arXiv:0704.1500 [hep-ex]

MiniBooNE 90% C.

KARMEN2 90% C.L

10

- Bugey 90% C.L

10

Low Energy Excess

Investigation of observed low-energy excess

- -Good description of data at high energy.
- -Excess of data events at low energy.

What is the nature of the excess?

- •Possible detector anomalies or reconstruction problems?
- •Incorrect estimation of the background?
- •New sources of background?
- •New physics including exotic oscillation scenarios?

Any of these backgrounds or signals could have an important impact on other future oscillation experiments.

Measuring π^0 and constraining misIDs from π^0

Fig. 1. Top: Results of the π^0 unsmearing in bins of momentum. The dark points show the unsmeared data π^0 momentum distribution and the light points show the uncorrected MC π^0 momentum distribution. The unsmeared data error bars contain all sources of error propagated through the unsmearing, while the MC error bars are from finite MC statistics. Bottom: The reweighing function, formed by taking ratio of the two points above (data/MC).

 π^0 rate measured to a few %. Critical input to oscillation analysis: without constraint π^0 errors would be ~ 20%

Details | Phys.Lett.B664, 41(2008)

Is the dirt responsible for the low-energy excess?

In low energy region there is a significant background from neutrino interactions in the region outside the tank ("dirt").

Dirt events tend to be at large radius, heading inward

Add a new cut on "Distance to Wall backward" to reduce these.

Has significant effect below 475 MeV to signal/background ratio

- Big reduction in dirt
- Some reduction of π^0 s
- Small effect on $v_e s$

Has almost no effect above 475 MeV

Photonuclear absorption of π^0 photon

Since MiniBooNE cannot tell an electron from a single gamma, any process that leads to a single gamma in the final state will be a background

Processes that remove ("absorb") one of the gammas from a $\nu_\mu\text{-induced NC}$ $\pi^0\to\gamma\gamma$

- photonuclear absorption

Photonuclear cross section

Adding this into the MC increases π^0 background by about 20%

New Results

Improvements in the Analysis

- •Improved π^0 (coherent) production incorporated.
- •Rechecked various background cross-section and rates $(\Delta \rightarrow N_{\gamma}, etc.)$
- ·Photo-nuclear interactions included.
- ·Improved estimate of the background from external events ("dirt") performed.
- ·More efficient rejection of the "dirt" events applied.
- ·Analysis threshold lowered to 200 MeV.
- ·Improved estimates of systematic errors (i.e. flux).
- ·Additional data set included in new results:

Old analysis: 5.58×10²⁰ protons on target.

New analysis: 6.46×10^{20} protons on target.

New Results

MC systematics includes data statistics.

_E _v _[MeV]	200-300	300-475	475-1250
total background	186.8±26	228.3±24.5	385.9±35.7
v, intrinsic	18.8	61.7	248.9
v_{μ} induced	168	166.6	137
"NC π ⁰	103.5	77.8	71.2
$NC \Delta \rightarrow N\gamma$	19.5	47.5	19.4
Dirt	11.5	12.3	11.5
other	33.5	29	34.9
Data	232	312	408
Data-MC	45.2±26	83.7±24.5	22.1±35.7
Significance	1.7σ	3.4 σ	0.6σ

The excess at low energy remains significant!

This will be published soon.

Oscillation Fit Check Events / MeV ₇10² 2.5 MiniBooNE data 6.462E20 POT Expected background BG+Best fit $v_u \rightarrow v_e$ ve background official E>475MeV 90%CL 1.5 v., background 10 0.5 0.6 0.8 0.2 1.2 0.4 E_vQE (GeV) Excess Events / MeV data - expected background best-fit v...→v. No changes in analysis 0.8 $\sin^2 2\theta = 0.004$, $\Delta m^2 = 1.0 \text{ eV}^2$ $\sin^2 2\theta = 0.2$. $\Delta m^2 = 0.1 \text{ eV}^2$ above 475 MeV 0.6 0.4 0.2 10⁻³ 10⁻² 10⁻¹ 1 sln²(2θ) E_v>475 MeV E_v>200 MeV -0.2 0.4 0.6 1.4 1.5 Null fit χ^2 (prob.): 9.1(91%) 22(28%) E_√QE (GeV) Best fit χ^2 (prob.): 7.2(93%) 18.3(37%)

Clearly, more evidence is needed to understand the excess...

Events from NuMI beamline (collected and analyzed in Collaboration with MINOS)

Events from NuMI detected at MiniBooNE

v_{μ} CCQE and v_{e} CCQE samples from NuMI

NuMI vs Booster Beam at MiniBooNE

Recall:

- 1) Distance to MiniBooNE:
- L (from NuMI source) ≈ 1.4 L (from Booster beam source).
- 2) Neutrino Oscillation depends on L and E through L/E ratio.

Therefore, if an anomaly seen at some E in Booster beam data is due to oscillation it should appear at 1.4E in the NuMI beam data at MiniBooNE.

Anti-neutrinos at MiniBooNE

MiniBooNE Anti-neutrino Run

MiniBooNE is currently taking data in anti-neutrino mode.

In November 07 Physics
Advisory Committee (Fermilab)
recommended MiniBooNE
run to get to a total of
5x10²⁰ POT in anti neutrino
mode.

Provides direct check of LSND result.

Provides additional data set for low energy excess study.

Collected ~3.3×10²⁰ POT so far. Oscillation data set "blinded".

v_u Disappearance at MiniBooNE

ν_μ Disappearance: Ongoing Analysis

- MiniBooNE only 90% CL sensitivity
- CDHS CCFR 90% CL

When we use SciBooNE as a near detector, we will be able to improve this sensitivity by reducing flux and cross section uncertainties

To hear about SciBooNE: talk by K. Hiraide.

Cross-sections at MiniBooNE

MiniBooNE Cross-section Results

- v_{μ} QE M_A , κ results: Phys. Rev. Lett. **100**, 032301 (2008)
- NC coherent π^0 production in ν mode: Phys. Lett. **B664**, 41 (2008)
- NC coherent π^0 production in $\overline{\nu}$ mode, V. Nguyen poster at ICHEP08
- CC π^+ /QE cross section ratio, S. Linden poster

coming soon:

- v_{μ} QE differential cross sections
- NC elastic cross section
- CC π^+ cross sections
- CC π^0 production
- QE results in $\overline{\nu}$ mode

Summary 1

- -MiniBooNE first result show no evidence for $v_{\mu} \rightarrow v_{e}$ appearance-only oscillations in the analysis region above 475 MeV.
- -However, at low energy (<475MeV) excess observed; thoroughly checked and confirmed with new analysis and additional data set.
- -We observed and analyzed the neutrino events from NuMI beamline at MiniBooNE.
- -MiniBooNE is collecting more data from NuMI beamline.
- -We are currently performing an analysis where v_e CCQE sample systematics constrained by v_u CCQE sample: common systematics cancels.
- -MiniBooNE is currently taking data in anti-neutrino mode.
- -Provides direct check of LSND result.
- -Provides additional data set (with NuMI) for low energy excess study.
- $-v_{\mu}$ disappearance analysis is underway.
- -New cross-section results coming soon.
- -Interesting ideas to explain the excess appeared in community.

Backup Slides

Particle Identification

Čerenkov rings provide primary means of identifying products of ν interactions in the detector beam μ

Global Data Analysis

Combine results from several experiments: LSND, MiniBooNE, Karmen and Bugey.

Get allowed regions

Where would oscillation parameters Δm^2 , $\sin^2 2\theta$ lie assuming that all experimental results come from the same underlying $v_u \rightarrow v_e$ oscillation hypothesis?

The star is the point of maximum compatibility

LSND, KARMEN2, MB

BUGEY Details arXiv:0805.1764 [hep-ex]

Fermilab Neutrino Beams

v_e CCQE and π^0 samples from NuMI

Is there a physics explanation for Low E excess?

- Anomaly Mediated Neutrino-Photon Interactions at Finite Baryon Density (arXiv:0708.1281: Jeffrey A. Harvey, Christopher T. Hill, Richard J. Hill)
- CP-Violation 3+2 Model: Maltoni & Schwetz, arXiv:0705.0107
- Extra Dimensions 3+1 Model: Pas, Pakvasa,
 & Weiler, Phys. Rev. D72 (2005) 095017

